Biodegradation of 2,4-dinitrophenol with laccase immobilized on nano-porous silica beads

نویسندگان

  • Emad Dehghanifard
  • Ahmad Jonidi Jafari
  • Roshanak Rezaei Kalantary
  • Amir Hosein Mahvi
  • Mohammad Ali Faramarzi
  • Ali Esrafili
چکیده

Many organic hazardous pollutants, including 2,4-dinitrophenol (2,4-DNP), which are water soluble, toxic, and not easily biodegradable make concerns for environmental pollution worldwide. In the present study, degradation of nitrophenols-contained effluents by using laccase immobilized on the nano-porous silica beads was evaluated. 2,4-DNP was selected as the main constituent of industrial effluents containing nitrophenols. The performance of the system was characterized as a function of pH, contact time, temperature, pollutant, and mediator concentrations. The laccase-silica beads were employed in a mixed-batch reactor to determine the degradation efficiency after 12 h of enzyme treatment. The obtained data showed that the immobilized laccase degraded more than 90% of 2,4-DNP within 12 h treatment. The immobilization process improved the activity and sustainability of laccase for degradation of the pollutant. Temperatures more than 50°C reduced the enzyme activity to about 60%. However, pH and the mediator concentration could not affect the enzyme activity. The degradation kinetic was in accordance with a Michaelis-Menten equation with Vmax and Km obtained as 0.25-0.38 μmoles/min and 0.13-0.017 mM, respectively. The stability of the immobilized enzyme was maintained for more than 85% of its initial activity after 30 days. Based on the results, it can be concluded that high resistibility and reusability of immobilized laccase on CPC-silica beads make it considerable choice for wastewater treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی کارایی آنزیم لکاز تثبیت شده روی سیلیکای متخلخل در حذف آلاینده 4،2-دی نیتروفنل از محیط آبی

Background and purpose: 2, 4-dinitrophenol (2,4-DNP) is categorized as one of the priority pollutants that is used in pharmaceutical and chemical industries, pesticides, etc. In this study we aimed at investigating the biodegradation of 2,4-DNP by immobilized laccase on nano-porous silica beads. Materials and methods: An experimental study was conducted in which the enzyme was chemically cro...

متن کامل

Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads

BACKGROUND Decolorization of hazardous synthetic dyes using laccases in both free and immobilized form has gained attention during the last decades. The present study was designed to prepare immobilized laccase (purified from Paraconiothyrium variabile) on porous silica beads followed by evaluation of both free and immobilized laccases for decolorization of two synthetic dyes of Acid Blue 25 an...

متن کامل

Respiratory properties of rat liver mitochondria immobilized on an alkylsilylated glass surface.

Rat liver mitochondria are shown to adhere to the alkylsilylated glass beads in essentially a monolayer. The amount of mitochondria bound to the beads reaches a maximum where the length of the alkyl groups covalently linked to the beads exceeds eight carbons. Mitochondria immobilized on the beads and placed in a flow system exhibit normal: (a) respiratory control, (b) phosphate to oxygen ratio,...

متن کامل

The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme

The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...

متن کامل

The immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme

The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2013